Senin, 15 Oktober 2012

Aplikasi GC

GC tampil menonjol dalam pekerjaan laboratorium pada topik-topik yang sedang banyak diamati. Analisanya, Badan Perlindungan Lingkungan (EPA) melakukan suatu program pemantauan kadar pestisida dan tanah, air tanah dan sampel-sampel semacamnya. Pendekatan umumnya melibatkan pengekstrasian sampel untuk mengkonsentrasikan analit dalam suatu pelarut organik yang sesuai dengan pengkromatografian ekstrak tersebut.

Sisa-sisa hormon yang digunakan untuk mendorong pertumbuhan binatang diukur dalam sampel daging dengan cara yang sama, dan ekstrak spesimen urin juga sama diuji dengan GLC dalam program penyaringan obat-obatan.

Aluminium besi dan tembaga dalam aliase telah ditetapkan dengan melarutkan sampel diikuti dengan ekstraksi logam-logam itu ke dalam larutan trifluoroaseton dalam kloroform yang kemudian dikromatografi.

GLC sangat berperan penting dalam upaya memonitor dan mengendalikan distribusi pencemaran dalam lingkungan, misalnya Badan Perlindungan Lingkungan (EPA) AS menjalankan suatu program yang ekstensif untuk memonitor kadar pestisida dalam tanah di berbagai tempat di negeri itu, tujuannya ialah menegakkan suatu garis pijakan yang menunjukkan dengan eksak situasi pada masa kini sehingga kecenderungan dalam masa depan dapat ditafsirkan dengan bermakna program yang serupa sedang dilakukan untuk hasil bumi, air, ikan, kehidupan bebas.

GLC dapat juga digunakan untuk identifikasi dan pengelompokan pemonitoran gas-gas pernapasan selama anestesia, penelusuran senyawa organik dan organisme hidup pada planet lain. Dan masih banyak lagi aplikasi dari GLC yang tidak dapat kami sebutkan satu persatu dalam kehidupan makhluk hidup di bumi.

 

Kromatografi Gas

Kromatografi gas adalah proses pemisahan campuran menjadi komponen-komponennya dengan menggunakan gas sebagai fase bergerak yang melewati suatu lapisan serapan (sorben) yang diam. Fase diam dapat berupa zat padat yang dikenal dengan kromatografi gas padat (GSC) dan zat cair sebagai kromatografi gas-cair (GLC). Keduanya hampir sama kecuali dibedakan dalam hal cara kerjanya. Pada GSC pemisahan berdasarkan adsorpsi sedangkan GLC berdasarkan partisi.

KG merupakan metode yang tepat dan cepat untuk memisahkan campuran yang sangat murni. Waktu yang digunakan beragam, mulai dari beberapa detik untuk campuran sederhana sampai berjam-jam untuk campuran yang mengandung 500-1000 komponen. Komponen campuran dapat diidentifikasi dengan menggunakan waktu retensi yang khas pada kondisi yang tepat.

Kromatografi Gas (KG), merupakan jenis kromatografi yang digunakan dalam kimia organik untuk pemisahan. Analisis KG dapat digunakan untuk menguji kemurnian dari bahan tertentu, atau memisahkan berbagai komponen dari campuran. Dalam beberapa situasi KG dapat membantu dalam mengidentifikasi sebuah kompleks. Dalam kromatografi gas, fase yang bergerak (mobile phase) adalah sebuah operatir gas, yang biasanya gas murni seperti helium atau yang tidak reactive seperti gas nitrogen. Stationary atau fasa diam merupakan tahap mikroskopis lapisan cair atau polimer yang mendukung gas murni, di dalam bagian dari sistem pipa-pipa kaca atau logam yang disebut kolom. Instrumen yang digunakan untuk melakukan kromatografi gas disebut gas chromatograph (”aerograph”, ”gas pemisah”).

Compounds gas yang sedang dianalisis berinteraksi dengan dinding kolom yang dilapisi dengan berbagai tahapan stationary. Ini menyebabkan setiap kompleks ke eluen diwaktu yang berbeda, yang dikenal sebagai ingatan waktu yang kompleks. Perbandingan dari ingatan kali yang memberikan kegunaan analisis KG-nya. Kromatografi gas yang pada prinsipnya sama dengan kromatografi kolom (serta yang lainnya bentuk kromatografi,seperti HPLC, TLC), tapi memiliki beberapa perbedaan penting. Pertama, proses memisahkan compunds dalam campuran dilakukan antara stationary fase cair dan gas fase bergerak, sedangkan pada kromatografi kolom yang seimbang adalah tahap yang solid dan bergerak adalah fase cair. (Jadi, nama lengkap prosedur adalah ”kromatografi gas-cair”, merujuk ke ponsel dan stationary tahapan masing-masing). Kedua, melalui kolom yang lolos tahap gas terletak di sebuah oven dimana temperatur gas yang dapat dikontrol, sedangkan kromatografi kolom (biasanya) tidak memiliki kontrol seperti suhu. Ketiga, konsentrasi yang majemuk dalam fase gas adalah hanya salah satu fungsi dari tekanan uap dari gas.

Kromatografi gas juga mirip dengan pecahan penyulingan, karena kedua proses memisahkan komponen dari campuran, terutama berdasarkan perbedaaan titik didih (atau tekanan uap). Namun, pecahan penyulingan biasanya digunakan untuk memisahkan komponen campuran pada skala besar.

Kromatografi gas terkadang juga dikenal sebagai uap-tahap kromatografi (VPC), atau gas-cair kromatografi partisi (GLPC). Dalam kasus kromatografi gas-cair, seperti ester seperti ftail dodesilsulfat yang diabsorbsi di permukaan alumina teraktivitasi, silika gel atau penyaring molekular, digunakan sebagai fasa diam dan diisikan ke dalam kolom. Campuran senyawa yang mudah menguap dicampur dengan gas pembawa disuntikkan ke dalam kolom, dan setiap senyawa akan dipartisi antara fasa gas (mobil) dan fasa cair (diam) mengikuti hukum partisi. Senyawa yang kurang larut dalam fasa diam akan keluar lebih dahulu.

Metode ini khususnya sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan ester. Analisis minyak mentah dan minyak atsiri dalam buah telah dengan sukses dilakukan dengan teknik ini.

Efisiensi pemisahan ditentukan dengan besarnya interaksi antara sampel dan cairannya. Disarankan untuk mencoba fasa cair standar yang diketahui efektif untuk berbagai senyawa. Berdasarkan hasil ini, cairan yang lebih khusus kemudian dapat dipilih. Metoda deteksinya, akan mempengaruhi kesensitifan teknik ini. Metoda yang dipilih akan bergantung apakah tujuannya analisis atau preparatif.

 

Minggu, 14 Oktober 2012

Struktur padatan kristalin

a. Susunan terjejal
Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal.
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal.
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan.
Gambar 8.4 Struktur terjejal
(a) Satu lapisan khas. Setiap bola dikelilingi oleh 12 bola lain. (b) Lapisan kedua yang mirip dengan lapisan pertama. Setiap bola akan menempati lubang yang terbentuk oleh tiga bola di lapis pertama. (c) setiap bola di lapisan ketiga akan terletak persis di atas lapisan pertama (susunan aba). (d) setiap bola di lapisan ketiga terletak di atas lubang lapisan pertama yang tidak digunaka oleh lapisan kedua (susunan abc).
Perak mengkristal dalam susunan kubus terjejal. Bila kristalnya dipotong seperti ditunjukkan di Gambar 8.5, satu bola akan terletak di pusat setiap muka kubus. Karena satu bola (satu atom) terletak di setiap pusat muka kubus, maka kisi ini disebut dengan kisi berpusat muka.
Gambar 8.5 Kisi kubus berpusat muka
Dalam kasus ini, hubungan antara r, jari-jari bola dan d,
panjang sel satuan, dapat ditentukan dengan teorema Pythagoras.
b. Kubus berpusat badan
Beberapa logam , seperti logam alkali, mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan sebagaimana diperlihatkan di Gambar 8.6. Cara penyusunan ini disebut dengan kisi kubus berusat badan.
c. Analisis kristalografi sinar-X
Teknik analisis kristalografi sinar-X pertama dikenalkan di awal abad 20, dan sejak itu telah digunakan dengan meluas untuk penentuan struktur berbagai senyawa. Teknik ini dengan sempurna telah menyelesaikan berbagai masalah yang sebelumnya tidak dapat diselesaikan. Tahap awal dicapai oleh William Henry Bragg (1862-1942), sang ayah, dan William Laurence Bragg (1890-1971), anaknya, yang menentukan struktur garam dan intan.
Hingga beberapa tahun terakhir, analisis kristalografi sinar-X hanya dilakukan para spesialis, yakni kristalografer, apapun molekul targetnya. Sungguh, pengukuran dan pemrosesan data yang diperlukan memerlukan pengetahuan dan pengalaman yang banyak. Namiun kini, berkat perkembangan yang cepat dan banyak dalam bidang hardware maupun software kristalografi sinar-X, pengukuran kristalografi sinar-X telah menjadi mungkin dilakukan dengan training yang lebih singkat. Kini, bahkan kimiawan sintesis yang minat utamanya sintesis dan melakukan analisis kristalografi sinar-X sendiri. Akibatnya molekul target yang dipelajari oleh para spesialis menjadi semakin rumit, dan bahkan struktur protein kini dapat dielusidasi bila massa molekulnya tidak terlalu besar. Kini pengetahuan tentang analisis kristalografi diperlukan semua kimiawan selain NMR (Bab 13.3).
Difraksi cahaya terjadi dalam zat bila jarak antar partikel-partikelnya yang tersusun teratur dan panjang gelombang cahaya yang digunakan sebanding. Gelombang terdifraksi akan saling menguatkan bila gelombangnya sefasa, tetapi akan saling meniadakan bila tidak sefasa. Bila kristal dikenai sinar-X monokromatis, akan diperoleh pola difraksi. Pola difraksi ini bergantung pada jarak antar titik kisi yang menentukan apakah gelombang akan saling menguatkan atau meniadakan.
Gambar 8.7 Kondisi difraksi Bragg.
Difraksi sinar- X oleh atom yang terletak di dua lapis kristal. Bila selisih lintasan optis, xy + yz = 2dsinθ, sama dengan kelipatan bulat panjang gelombang, gelombang tersebut akan saling menguatkan.
Andaikan panjang gelombang sinar-X adalah λ (Gambar 8.7). Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum bila:
nλ = 2dsinθ … (8.1)
Persamaan ini disebut dengan kondisi Bragg.
Kondisi Bragg dapat diterapkan untuk dua tujuan. Bila jarak antar atom diketahui, panjang gelombang sinar-X dapat ditentukan dengan mengukur sudut difraksi. Moseley menggunakan metoda ini ketika ia menentukan panjang gelombang sinar X berbagai unsur. Di pihak lain, bila panjang gelombang sinar-X diketahui, jarak antar atom dapat ditentikan dengan mengukur sudut difraksi. Prinsip inilah dasar analisis kristalografi sinar-X.

asam sulfat



Asam sulfat, H2SO4, merupakan asam mineral (anorganik) yang kuat. Zat ini larut dalam air pada semua perbandingan. Asam sulfat mempunyai banyak kegunaan dan merupakan salah satu produk utama industri kimia. Produksi dunia asam sulfat pada tahun 2001 adalah 165 juta ton, dengan nilai perdagangan seharga US$8 juta. Kegunaan utamanya termasuk pemrosesan bijih mineral, sintesis kimia, pemrosesan air limbah dan pengilangan minyak.
Keberadaan
Asam sulfat murni yang tidak diencerkan tidak dapat ditemukan secara alami di bumi oleh karena sifatnya yang higroskopis. Walaupun demikian, asam sulfat merupakan komponen utama hujan asam, yang terjadi karena oksidasi sulfur dioksida di atmosfer dengan keberadaan air (oksidasi asam sulfit). Sulfur dioksida adalah produk sampingan utama dari pembakaran bahan bakar seperti batu bara dan minyak yang mengandung sulfur (belerang).
Asam sulfat terbentuk secara alami melalui oksidasi mineral sulfida, misalnya besi sulfida. Air yang dihasilkan dari oksidasi ini sangat asam dan disebut sebagai air asam tambang. Air asam ini mampu melarutkan logam-logam yang ada dalam bijih sulfida, yang akan menghasilkan uap berwarna cerah yang beracun. Oksidasi besi sulfida pirit oleh oksigen molekuler menhasilkan besi(II), atau Fe2+:
2 FeS2 + 7 O2 + 2 H2O → 2 Fe2+ + 4 SO42− + 4 H+
Fe2+ dapat kemudian dioksidasi lebih lanjut menjadi Fe3+:
4 Fe2+ + O2 + 4 H+ → 4 Fe3+ + 2 H2O
Fe3+ yang dihasilkan dapat diendapkan sebagai hidroksida:
Fe3+ + 3 H2O → Fe(OH)3 + 3 H+
Besi(III) atau ion feri juga dapat mengoksidasi pirit. Ketika oksidasi pirit besi(III) terjadi, proses ini akan berjalan dengan cepat. Nilai pH yang lebih rendah dari nol telah terukur pada air asam tambang yang dihasilkan oleh proses ini.
Asam sulfat di luar angkasa
Atmosfer Venus
Asam sulfat diproduksi di atmosfer bagian atas Venus dari karbon dioksida, sulfur dioksida, dan uap air secara fotokimia oleh cahaya matahari. Foton ultraviolet dengan panjang gelombang kurang dari 169 nm dapat mengakibatkan fotodisosiasi karbon dioksida menjadi karbon monoksida dan oksigen atomik.
Oksigen atomik sangatlah reaktif. Ketika ia bereaksi dengan sulfur dioksida yang merupakan sekelumit bagian dari atmosfer Venus, sulfur trioksida dihasilkan, dan ketika bergabung dengan air, akan menghasilkan asam sulfat.
CO2 → CO + O
SO2 + O → SO3
SO3 + H2O → H2SO4
Di bagian atas atmosfer Venus yang lebih dingin, asam sulfat terdapat dalam keadaan cair, dan awan asam sulfat yang tebal menghalangi pandangan permukaan Venus ketika dipandang dari atas. Awan permanen Venus menghasilkan hujan asam yang pekat sama halnya atmosfer bumi menghasilkan air hujan.
Atmosfer Venus menunjukkan adanya siklus asam sulfat. Setelah tetesan hujan asam sulfat jatuh ke lapisan atmosfer yang lebih panas, asam sulfat akan dipanaskan dan melepaskan uap air, sehingga asam sulfat tersebut menjadi lebih pekat. Ketika mencapai temperatur di atas 300 °C, asam sulfat mulai berdekomposisi menjadi sulfur trioksida dan air (dalam fase gas). Sulfur trioksida sangatlah reaktif dan berdisosiasi menjadi sulfur dioksida dan oksigen atomik, yang akan kemudian mengoksidasi karbon monoksida menjadi karbon dioksida.
Sulfur dioksida dan uap air kemudian naik secara arus konveksi dari lapisan tengah atmosfer menuju lapisan atas, di mana keduanya akan diubah kembali lagi menjadi asam sulfat, dan siklus ini kemudian berulang.
Pada permukaan es Europa
Spektrum inframerah dari misi Galileo NASA menunjukkan adanya absorpsi khusus pada satelit Yupiter Europa yang mengindikasikan adanya satu atau lebih hidrat asam sulfat. Interpretasi spektrum ini kontroversial. Beberapa ilmuwan planet lebih condong menginterpretasikan spektrum ini sebagai ion sulfat, kemungkinan sebagai bagian dari mineral Europa

Pembuatan
Asam sulfat diproduksi dari belerang, oksigen, dan air melalui proses kontak.
Pada langkah pertama, belerang dipanaskan untuk mendapatkan sulfur dioksida:
S (s) + O2 (g) → SO2 (g)
Sulfur dioksida kemudian dioksidasi menggunakan oksigen dengan keberadaan katalis vanadium(V) oksida:
2 SO2 + O2(g) → 2 SO3 (g)   (dengan keberadaan V2O5)
Sulfur trioksida diserap ke dalam 97-98% H2SO4 menjadi oleum (H2S2O7), juga dikenal sebagai asam sulfat berasap. Oleum kemudian diencerkan ke dalam air menjadi asam sulfat pekat.
H2SO4 (l) + SO3 → H2S2O7 (l)
H2S2O7 (l) + H2O (l) → 2 H2SO4 (l)
Perhatikan bahwa pelarutan langsung SO3 ke dalam air tidaklah praktis karena reaksi sulfur trioksida dengan air yang bersifat eksotermik. Reaksi ini akan membentuk aerosol korosif yang akan sulit dipisahkan.
SO3(g) + H2O (l) → H2SO4(l)
Sebelum tahun 1900, kebanyakan asam sulfat diproduksi dengan proses bilik.
Sifat-sifat fisika
Bentuk-bentuk asam sulfat
Walaupun asam sulfat yang mendekati 100% dapat dibuat, ia akan melepaskan SO3 pada titik didihnya dan menghasilkan asam 98,3%. Asam sulfat 98% lebih stabil untuk disimpan, dan merupakan bentuk asam sulfat yang paling umum. Asam sulfat 98% umumnya disebut sebagai asam sulfat pekat. Terdapat berbagai jenis konsentrasi asam sulfat yang digunakan untuk berbagai keperluan:
  • 10%, asam sulfat encer untuk kegunaan laboratorium,
  • 33,53%, asam baterai,
  • 62,18%, asam bilik atau asam pupuk,
  • 73,61%, asam menara atau asam glover,
  • 97%, asam pekat.
Terdapat juga asam sulfat dalam berbagai kemurnian. Mutu teknis H2SO4 tidaklah murni dan seringkali berwarna, namun cocok untuk digunakan untuk membuat pupuk. Mutu murni asam sulfat digunakan untuk membuat obat-obatan dan zat warna.
Apabila SO3(g) dalam konsentrasi tinggi ditambahkan ke dalam asam sulfat, H2S2O7 akan terbentuk. Senyawa ini disebut sebagai asam pirosulfat, asam sulfat berasap, ataupun oleum. Konsentrasi oleum diekspresikan sebagai %SO3 (disebut %oleum) atau %H2SO4 (jumlah asam sulfat yang dihasilkan apabila H2O ditambahkan); konsentrasi yang umum adalah 40% oleum (109% H2SO4) dan 65% oleum (114,6% H2SO4). H2S2O7 murni terdapat dalam bentuk padat dengan titik leleh 36 °C.
Asam sulfat murni berupa cairan bening seperti minyak, dan oleh karenanya pada zaman dahulu ia dinamakan 'minyak vitriol'.


Polaritas dan konduktivitas
H2SO4 anhidrat adalah cairan yang sangat polar. Ia memiliki tetapan dielektrik sekitar 100. Konduktivitas listriknya juga tinggi. Hal ini diakibatkan oleh disosiasi yang disebabkan oleh swa-protonasi, disebut sebagai autopirolisis.[3]
2 H2SO4 → H3SO4+ + HSO4
Konstanta kesetimbangan autopirolisisnya adalah[3]
Kap(25 °C)= [H3SO4+][HSO4] = 2,7 × 10−4.
Dibandingkan dengan konstanta keseimbangan air, Kw = 10−14, nilai konstanta kesetimbangan autopirolisis asam sulfat 1010 (10 triliun) kali lebih kecil.
Walaupun asam ini memiliki viskositas yang cukup tinggi, konduktivitas efektif ion H3SO4+ dan HSO4 tinggi dikarenakan mekanisme ulang alik proton intra molekul, menjadikan asam sulfat sebagai konduktor yang baik. Ia juga merupakan pelarut yang baik untuk banyak reaksi.
Kesetimbangan kimiawi asam sulfat sebenarnya lebih rumit daripada yang ditunjukkan di atas; 100% H2SO4 mengandung beragam spesi dalam kesetimbangan (ditunjukkan dengan nilai milimol per kg pelarut), yaitu: HSO4 (15,0), H3SO4+ (11,3), H3O+ (8,0), HS2O7 (4,4), H2S2O7 (3,6), H2O (0,1).[3]

Sifat-sifat kimia
Reaksi dengan air
Reaksi hidrasi asam sulfat sangatlah eksotermik. Selalu tambahkan asam ke dalam air daripada air ke dalam asam. Air memiliki massa jenis yang lebih rendah daripada asam sulfat dan cenderung mengapung di atasnya, sehingga apabila air ditambahkan ke dalam asam sulfat pekat, ia akan dapat mendidih dan bereaksi dengan keras. Reaksi yang terjadi adalah pembentukan ion hidronium:
H2SO4 + H2O → H3O+ + HSO4-
HSO4- + H2O → H3O+ + SO42-
Karena hidrasi asam sulfat secara termodinamika difavoritkan, asam sulfat adalah zat pendehidrasi yang sangat baik dan digunakan untuk mengeringkan buah-buahan. Afinitas asam sulfat terhadap air cukuplah kuat sedemikiannya ia akan memisahkan atom hidrogen dan oksigen dari suatu senyawa. Sebagai contoh, mencampurkan pati (C6H12O6)n dengan asam sulfat pekat akan menghasilkan karbon dan air yang terserap dalam asam sulfat (yang akan mengencerkan asam sulfat):
(C6H12O6)n → 6n C + 6n H2O
Efek ini dapat dilihat ketika asam sulfat pekat diteteskan ke permukaan kertas. Selulosa bereaksi dengan asam sulfat dan menghasilkan karbon yang akan terlihat seperti efek pembakaran kertas. Reaksi yang lebih dramatis terjadi apabila asam sulfat ditambahkan ke dalam satu sendok teh gula. Seketika ditambahkan, gula tersebut akan menjadi karbon berpori-pori yang mengembang dan mengeluarkan aroma seperti karamel.
Reaksi lainnya
Sebagai asam, asam sulfat bereaksi dengan kebanyakan basa, menghasilkan garam sulfat. Sebagai contoh, garam tembaga tembaga(II) sulfat dibuat dari reaksi antara tembaga(II) oksida dengan asam sulfat:
CuO + H2SO4 → CuSO4 + H2O
Asam sulfat juga dapat digunakan untuk mengasamkan garam dan menghasilkan asam yang lebih lemah. Reaksi antara natrium asetat dengan asam sulfat akan menghasilkan asam asetat, CH3COOH, dan natrium bisulfat:
H2SO4 + CH3COONa → NaHSO4 + CH3COOH
Hal yang sama juga berlaku apabila mereaksikan asam sulfat dengan kalium nitrat. Reaksi ini akan menghasilkan asam nitrat dan endapat kalium bisulfat. Ketika dikombinasikan dengan asam nitrat, asam sulfat berperilaku sebagai asam sekaligus zat pendehidrasi, membentuk ion nitronium NO2+, yang penting dalam reaksi nitrasi yang melibatkan substitusi aromatik elektrofilik. Reaksi jenis ini sangatlah penting dalam kimia organik.
Asam sulfat bereaksi dengan kebanyakan logam via reaksi penggantian tunggal, menghasilkan gas hidrogen dan logam sulfat. H2SO4 encer menyerang besi, aluminium, seng, mangan, magnesium dan nikel. Namun reaksi dengan timah dan tembaga memerlukan asam sulfat yang panas dan pekat. Timbal dan tungsten tidak bereaksi dengan asam sulfat. Reaksi antara asam sulfat dengan logam biasanya akan menghasilkan hidrogen seperti yang ditunjukkan pada persamaan di bawah ini. Namun reaksi dengan timah akan menghasilkan sulfur dioksida daripada hidrogen.
Fe (s) + H2SO4 (aq) → H2 (g) + FeSO4 (aq)
Sn (s) + 2 H2SO4 (aq) → SnSO4 (aq) + 2 H2O (l) + SO2 (g)
Hal ini dikarenakan asam pekat panas umumnya berperan sebagai oksidator, manakala asam encer berperan sebagai asam biasa. Sehingga ketika asam pekat panas bereaksi dengan seng, timah, dan tembaga, ia akan menghasilkan garam, air dan sulfur dioksida, manakahal asam encer yang beraksi dengan logam seperti seng akan menghasilkan garam dan hidrogen.
Asam sulfat menjalani reaksi substitusi aromatik elektrofilik dengan senyawa-senyawa aromatik, menghasilkan asam sulfonat terkait:[4]
Kegunaan
Asam sulfat merupakan komoditas kimia yang sangat penting, dan sebenarnya pula, produksi asam sulfat suatu negara merupakan indikator yang baik terhadap kekuatan industri negara tersebut.[5] Kegunaan utama (60% dari total produksi di seluruh dunia) asam sulfat adalah dalam "metode basah" produksi asam fosfat, yang digunakan untuk membuat pupuk fosfat dan juga trinatrium fosfat untuk deterjen. Pada metode ini, batuan fosfat digunakan dan diproses lebih dari 100 juta ton setiap tahunnya. Bahan-bahan baku yang ditunjukkan pada persamaan di bawah ini merupakan fluorapatit, walaupun komposisinya dapat bervariasi. Bahan baku ini kemudian diberi 93% asam suflat untuk menghasilkan kalsium sulfat, hidrogen fluorida (HF), dan asam fosfat. HF dipisahan sebagai asam fluorida. Proses keseluruhannya dapat ditulis:
Ca5F(PO4)3 + 5 H2SO4 + 10 H2O → 5 CaSO4•2 H2O + HF + 3 H3PO4
Asam sulfat digunakan dalam jumlah yang besar oleh industri besi dan baja untuk menghilangkan oksidasi, karat, dan kerak air sebelum dijual ke industri otomobil. Asam yang telah digunakan sering kali didaur ulang dalam kilang regenerasi asam bekas (Spent Acid Regeneration (SAR) plant). Kilang ini membakar asam bekas dengan gas alam, gas kilang, bahan bakar minyak, ataupun sumber bahan bakar lainnya. Proses pembakaran ini akan menghasilkan gas sulfur dioksida (SO2) dan sulfur trioksida (SO3) yang kemudian digunakan untuk membuat asam sulfat yang "baru".
Amonium sulfat, yang merupakan pupuk nitrogen yang penting, umumnya diproduksi sebagai produk sampingan dari kilang pemroses kokas untuk produksi besi dan baja. Mereaksikan amonia yang dihasilkan pada dekomposisi termal batu bara dengan asam sulfat bekas mengijinkan amonia dikristalkan keluar sebagai garam (sering kali berwarna coklat karena kontaminasi besi) dan dijual kepada industri agrokimia.
Kegunaan asam sulfat lainnya yang penting adalah untuk pembuatan aluminium sulfat. Alumunium sulfat dapat bereaksi dengan sejumlah kecil sabun pada serat pulp kertas untuk menghasilkan aluminium karboksilat yang membantu mengentalkan serat pulp menjadi permukaan kertas yang keras. Aluminium sulfat juga digunakan untuk membuat aluminium hidroksida. Aluminium sulfat dibuat dengan mereaksikan bauksit dengan asam sulfat:
Al2O3 + 3 H2SO4 → Al2(SO4)3 + 3 H2O
Asam sulfat juga memiliki berbagai kegunaan di industri kimia. Sebagai contoh, asam sulfat merupakan katalis asam yang umumnya digunakan untuk mengubah sikloheksanonoksim menjadi kaprolaktam, yang digunakan untuk membuat nilon. Ia juga digunakan untuk membuat asam klorida dari garam melalui proses Mannheim. Banyak H2SO4 digunakan dalam pengilangan minyak bumi, contohnya sebagai katalis untuk reaksi isobutana dengan isobutilena yang menghasilkan isooktana.

Bahaya
Sifat-sifat asam sulfat yang korosif diperburuk oleh reaksi eksotermiknya dengan air. Luka bakar akibat asam sulfat berpotensi lebih buruk daripada luka bakar akibat asam kuat lainnya, hal ini dikarenakan adanya tambahan kerusakan jaringan dikarenakan dehidrasi dan kerusakan termal sekunder akibat pelepasan panas oleh reaksi asam sulfat dengan air.
Perawatan pertama yang standar dalam menangani tumpahnya asam sulfat ke kulit adalah dengan membilas kulit tersebut dengan air sebanyak-banyaknya. Pembilasan dilanjutkan selama 10 sampai 15 menit untuk mendinginkan jaringan disekitar luka bakar asam dan untuk menghindari kerusakan sekunder. Pakaian yang terkontaminasi oleh asam sulfat harulah dilepaskan dengan segera dan segera bilas kulit yang berkontak dengan pakaian tersebut.

Ikatan kovalen pada H2SO4
        Ikatan Kovalen
<![if !supportLists]>o   <![endif]>Adalah ikatan yang terjadi karena pemakaian pasangan elektron secara bersama oleh 2 atom yang berikatan.
<![if !supportLists]>o   <![endif]>Ikatan kovalen terjadi akibat ketidakmampuan salah 1 atom yang akan berikatan untuk melepaskan elektron (terjadi pada atom-atom non logam).
<![if !supportLists]>o   <![endif]>Ikatan kovalen terbentuk dari atom-atom unsur yang memiliki afinitas elektron tinggi serta beda keelektronegatifannya lebih kecil dibandingkan ikatan ion.
<![if !supportLists]>o   <![endif]>Atom non logam cenderung untuk menerima elektron sehingga jika tiap-tiap atom non logam berikatan maka ikatan yang terbentuk dapat dilakukan dengan cara mempersekutukan elektronnya dan akhirnya terbentuk pasangan elektron yang dipakai secara bersama.
<![if !supportLists]>o   <![endif]>Pembentukan ikatan kovalen dengan cara pemakaian bersama pasangan elektron tersebut harus sesuai dengan konfigurasi elektron pada unsur gas mulia yaitu 8 elektron (kecuali He berjumlah 2 elektron).







Artikel yang berkaitan...