Senin, 07 Maret 2011

Hukum Pertama Termodinamika

Termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika
energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal. Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik. Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.

Hukum Pertama Termodinamika

Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.

@ Konsep dasar dalam termodinamika

Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.

@ Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

  • sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
  • sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
    • pembatas adiabatik: tidak memperbolehkan pertukaran panas.
    • pembatas rigid: tidak memperbolehkan pertukaran kerja.
  • sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

@ Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem). Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Sabtu, 05 Maret 2011

Properties of carboxylic acid

Solubility


Carboxylic acid dimers
Carboxylic acids are polar. Because they are both hydrogen-bond acceptors (the carbonyl) and hydrogen-bond donors (the hydroxyl), they also participate in hydrogen bonding. Together the hydroxyl and carbonyl group forms the functional group carboxyl. Carboxylic acids usually exist as dimeric pairs in nonpolar media due to their tendency to “self-associate.” Smaller carboxylic acids (1 to 5 carbons) are soluble with water, whereas higher carboxylic acids are less soluble due to the increasing hydrophobic nature of the alkyl chain. These longer chain acids tend to be rather soluble in less-polar solvents such as ethers and alcohols.

Boiling points

Carboxylic acids tend to have higher boiling points than water, not only because of their increased surface area, but because of their tendency to form stabilised dimers. Carboxylic acids tend to evaporate or boil as these dimers. For boiling to occur, either the dimer bonds must be broken, or the entire dimer arrangement must be vaporised, both of which increase enthalpy of vaporisation requirements significantly.

Acidity

Carboxylic acids are typically weak acids, meaning that they only partially dissociate into H+ cations and RCOO anions in neutral aqueous solution. For example, at room temperature, only 0.02 % of all acetic acid molecules are dissociated. Electronegative substituents give stronger acids.
Carboxylic Acids pKa
Formic acid (HCO2H) 3.77
Acetic acid (CH3COOH) 4.76
Chloroacetic acid (CH2ClCO2H) 2.86
Dichloroacetic acid (CHCl2CO2H) 1.29
Trichloroacetic acid (CCl3CO2H) 0.65
Trifluoroacetic acid (CF3CO2H) 0.5
Oxalic acid (HO2CCO2H) 1.27
Benzoic acid (C6H5CO2H) 4.2
Deprotonation of a carboxylic acid gives a carboxylate anion, which is resonance stabilized because the negative charge is shared (delocalized) between the two oxygen atoms increasing its stability. Each of the carbon-oxygen bonds in a carboxylate anion has partial double-bond character.

Odor

Carboxylic acids often have strong odors, especially the volatile derivatives. Most common are acetic acid (vinegar) and butyric acid (rancid butter). On the other hand, esters of carboxylic acids tend to have pleasant odors and many are used in perfumes.

 Nomenclature

The simplest series of carboxylic acids are the alkanoic acids, RCOOH, where R is a hydrogen or an alkyl group. Compounds may also have two or more carboxylic acid groups per molecule. The mono- and dicarboxylic acids have trivial names.

 Characterization

Carboxylic acids are most readily identified as such by infrared spectroscopy. They exhibit a sharp band associated with vibration of the C-O vibration bond (νC=O) between 1680 and 1725 cm−1. A characteristic νO-H band appears as a broad peak in the 2500 to 3000 cm−1 region. By 1H NMR spectrometry, the hydroxyl hydrogen appears in the 10-13 ppm region, although it is often either broadened or not observed owing to exchange with traces of water.

 Occurrence and applications

Many carboxylic acids are produced industrially on a large scale. They are also pervasive in nature. Esters of fatty acids are the main components of lipids and polyamides of aminocarboxylic acids are the main components of proteins.
Carboxylic acids are used in the production of polymers, pharmaceuticals, solvents, and food additives. Industrially important carboxylic acids include acetic acid (component of vinegar, precursor to solvents and coatings), acrylic and methacrylic acids (precursors to polymers, adhesives), adipic acid (polymers), citric acid (beverages), ethylenediaminetetraacetic acid (chelating agent), fatty acids (coatings), maleic acid (polymers), propionic acid (food preservative), terephthalic acid (polymers).

 Synthesis

Industrial routes

Industrial routes to carboxylic acids generally differ from those used on smaller scale because they require specialized equipment.
  • Oxidation of aldehydes with air using cobalt and manganese catalysts. The required aldehydes are readily obtained from alkenes by hydroformylation.
  • Oxidation of hydrocarbons using air. For simple alkanes, the method is nonselective but so inexpensive to be useful. Allylic and benzylic compounds undergo more selective oxidations. Alkyl groups on a benzene ring oxidized to the carboxylic acid, regardless of its chain length. Benzoic acid from toluene and terephthalic acid from para-xylene, and phthalic acid from ortho-xylene are illustrative large-scale conversions. Acrylic acid is generated from propene.
  • Base-catalyzed dehydrogenation of alcohols.
  • Carbonylation is versatile method when coupled to the addition of water. This method is effective for alkenes that generate secondary and tertiary carbocations, e.g. isobutylene to pivalic acid. In the Koch reaction, the addition of water and carbon monoxide to alkenes is catalyzed by strong acids. Acetic acid and formic acid are produced by the carbonylation of methanol, conducted with iodide and alkoxide promoters, respectively and often with high pressures of carbon monoxide, usually involving additional hydrolytic steps. Hydrocarboxylations involve the simultaneous addition of water and CO. Such reactions are sometimes called "Reppe chemistry":
HCCH + CO + H2O → CH2=CHCO2H
  • Some long chain carboxylic acids are obtained by the hydrolysis of triglycerides obtained from plant or animal oils. These methods are related to soap making.
  • fermentation of ethanol is used in the production of vinegar.

Laboratory methods

Preparative methods for small scale reactions for research or for production of fine chemicals often employ expensive consumable reagents.
  • oxidation of primary alcohols or aldehydes with strong oxidants such as potassium dichromate, Jones reagent, potassium permanganate, or sodium chlorite. The method is amenable to laboratory conditions compared to the industrial use of air, which is “greener” since it yields less inorganic side products such as chromium or manganese oxides.
  • Oxidative cleavage of olefins by ozonolysis, potassium permanganate, or potassium dichromate.
  • Carboxylic acids can also be obtained by the hydrolysis of nitriles, esters, or amides, generally with acid- or base-catalysis.
  • Carbonation of a Grignard and organolithium reagents:
RLi + CO2 RCO2Li
RCO2Li + HCl RCO2H + LiCl
  • Halogenation followed by hydrolysis of methyl ketones in the haloform reaction
  • The Kolbe-Schmitt reaction provides a route to salicylic acid, precursor to aspirin.

Less-common reactions

Many reactions afford carboxylic acids but are used only in specific cases or are mainly of academic interest:
  • Disproportionation of an aldehyde in the Cannizzaro reaction
  • Rearrangement of diketones in the benzilic acid rearrangement involving the generation of benzoic acids are the von Richter reaction from nitrobenzenes and the Kolbe-Schmitt reaction from phenols.

Reactions

The most widely practiced reactions convert carboxylic acids into esters, amides, carboxylate salts, acid chlorides, and alcohols. Carboxylic acids react with bases to form carboxylate salts, in which the hydrogen of the hydroxyl (-OH) group is replaced with a metal cation. Thus, acetic acid found in vinegar reacts with sodium bicarbonate (baking soda) to form sodium acetate, carbon dioxide, and water:
CH3COOH + NaHCO3 → CH3COONa+ + CO2 + H2O
Carboxylic acids also react with alcohols to give esters. This process is heavily used in the production of polyesters. Similarly carboxylic acids are converted into amides, but this conversion typically does not occur by direct reaction of the carboxylic acid and the amine. Instead esters are typical precursors to amides. The conversion of amino acids into peptides is a major biochemical process that requires ATP.
The hydroxyl group on carboxylic acids may be replaced with a chlorine atom using thionyl chloride to give acyl chlorides. In nature, carboxylic acids are converted to thioesters.
Carboxylic acid can be reduced to the alcohol by hydrogenation or using stoichiometric hydride reducing agents such as [lithium aluminium hydride].
N,N-dimethylchloromethylenammonium chloride is a highly chemoselective agent for carboxylic acid reduction. It selectively activate the carboxylic acid and is known to tolerate active functionalities such as ketone as well as the moderate ester, olefin, nitrile and halide moeties.

Specialized reactions

  • As with all carbonyl compounds, the protons on the α-carbon are labile due to keto-enol tautomerization. Thus the α-carbon is easily halogenated in the Hell-Volhard-Zelinsky halogenation.
  • The Schmidt reaction converts carboxylic acids to amines.
  • Carboxylic acids are decarboxylated in the Hunsdiecker reaction.
  • The Dakin-West reaction converts an amino acid to the corresponding amino ketone.
  • In the Barbier-Wieland degradation, the alpha-methylene group in an aliphatic carboxylic acid is removed in a sequence of reaction steps, effectively a chain-shortening. The inverse procedure is the Arndt-Eistert synthesis, where an acid is converted into acyl halide and reacts with diazomethane to give the highest homolog.
  • Many acids undergo decarboxylation. Enzymes that catalyze these reactions are known as carboxylases (EC 6.4.1) and decarboxylases (EC 4.1.1).
  • Carboxylic acids are reduced to aldehydes via the ester and DIBAL, via the acid chloride in the Rosenmund reduction and via the thioester in the Fukuyama reduction.

Nomenclature and examples

The carboxylate anion R-COO is usually named with the suffix -ate, so acetic acid, for example, becomes acetate ion. In IUPAC nomenclature, carboxylic acids have an -oic acid suffix (e.g., octadecanoic acid). In common nomenclature, the suffix is usually -ic acid (e.g., stearic acid).
Straight-Chained, Saturated Carboxylic Acids

Carbon atoms
Common name
IUPAC name
Chemical formula
Common location or use
1
Formic acid
Methanoic acid
HCOOH
Insect stings
2
Acetic acid
Ethanoic acid
CH3COOH
Vinegar
3
Propionic acid
Propanoic acid
CH3CH2COOH
Preservative for stored grains
4
Butyric acid
Butanoic acid
CH3(CH2)2COOH
Rancid butter
5
Valeric acid
Pentanoic acid
CH3(CH2)3COOH
Valerian
6
Caproic acid
Hexanoic acid
CH3(CH2)4COOH
Goat fat
7
Enanthic acid
Heptanoic acid
CH3(CH2)5COOH

8
Caprylic acid
Octanoic acid
CH3(CH2)6COOH
Coconuts and breast milk
9
Pelargonic acid
Nonanoic acid
CH3(CH2)7COOH
Pelargonium
10
Capric acid
Decanoic acid
CH3(CH2)8COOH

11
Lauric acid
Dodecanoic acid
CH3(CH2)10COOH
Coconut oil and hand wash soaps.
12
Myristic acid
Tetradecanoic acid
CH3(CH2)12COOH
Nutmeg
13
Palmitic acid
Hexadecanoic acid
CH3(CH2)14COOH
Palm oil
14
Stearic acid
Octadecanoic acid
CH3(CH2)16COOH
Chocolate, waxes, soaps, and oils
205
Arachidic acid
Icosanoic acid
CH3(CH2)18COOH
Peanut oil













































































Other carboxylic acids
Compound class Members
unsaturated monocarboxylic acids acrylic acid (2-propenoic acid) – CH2=CHCOOH, used in polymer synthesis
Fatty acids medium to long-chain saturated and unsaturated monocarboxylic acids, with even number of carbons examples docosahexaenoic acid and eicosapentaenoic acid (nutritional supplements)
Amino acids the building blocks of proteins
Keto acids acids of biochemical significance that contain a ketone group e.g. acetoacetic acid and pyruvic acid
Aromatic carboxylic acids benzoic acid, the sodium salt of benzoic acid is used as a food preservative , salicylic acid – a beta hydroxy type found in many skin care products
Dicarboxylic acids containing two carboxyl groups examples adipic acid the monomer used to produce nylon and aldaric acid – a family of sugar acids
Tricarboxylic acids containing three carboxyl groups example citric acid – found in citrus fruits and isocitric acid
Alpha hydroxy acids containing a hydroxy group example glyceric acid, glycolic acid and lactic acid (2-hydroxypropanoic acid) – found in sour milk tartaric acid - found in win

Jumat, 04 Maret 2011

Persamaan Nernst

Elektrokimia

  A. Persamaan Nernst

  untuk reaksi umum:

      A b + B → c C + d D

      ? G =? G Q ° + RT ln

   mana,

      Q =

[C] c

[D] d

[A] a

[B] b

 sejak,? G ° = - n E ° F

  ;? G = - n FE;? G =? G Q ° + RT ln

    - N F E = - n F E ° + RT ln Q

   mengatur ulang, untuk mendapatkan "Persamaan Nernst"

 E ° - E = nFln Q

RT

 Persamaan Nernst menunjukkan hubungan antara sel standar potensial (E °) dan potensial sel (E) di bawah aktual, kondisi non-standar.    ini dapat disederhanakan pada 25 ° C untuk:

 ln Q n

E ° - E = ° E - E =0,0257 V

 
 

  utama penggunaan Persamaan Nernst:

• menentukan Ecell  dari potensial reduksi standar

• menggunakan konsentrasi yang sebenarnya (misalnya, Q) untuk menghitung Ecell

  Contoh

Apakah reaksi berikut terjadi secara spontan pada 25 ° C, mengingat bahwa

[Fe +2] = 0,60 M dan [Cd +2] = 0,010 M?

  Cd (s) + Fe 2 → Cd2 + (aq) + Fe (s)

  B. Konsentrasi Sel

sel terdiri dari dua konsentrasi ion-ion yang sama

Zn (s) | Zn2 + (0,1 M) | | Zn2 + (1.0 M) | Zn (s)

  
 

19.6 Baterai

sel elektrokimia atau serangkaian sel elektrokimia gabungan yang

dapat digunakan sebagai sumber arus listrik pada tegangan konstan

 Contoh

• sel baterai kering (senter, ... ..)

• merkuri baterai (jam tangan ... ..)

• aki timbal (mobil-seri sel)

• solid-state baterai lithium (lithium logam ringan dan polimer padat elektrolit)

sel bahan bakar • (kebutuhan pasokan kontinu reaktan: H2 dan O2)

 19.7 Korosi

kerusakan logam oleh proses elektrokimia  mis, karat, pelapisan kehijauan pada tembaga


 


 

19,8 Elektrolisis

• Proses di mana energi listrik digunakan untuk menyebabkan nonspontaneous reaksi kimia terjadi

• elektrolitik cell - alat yang digunakan untuk elektrolisis A. NaCl cair - lihat Gambar 19,17   oksidasi (anoda):

2 Cl- (L) → Cl

2 (g) + 2 e-

   Cl- Ion bermigrasi ke arah elektroda positif dan teroksidasi pengurangan (katoda): Na + (l) + e- → Na (l)  Na + ion bermigrasi ke arah elektrode negatif dan dikurangi

Ingat:

Elektroda

katoda - dimana reduksi terjadi anoda - dimana oksidasi terjadi

  Bersih Cell Reaksi: anoda menambah dan setengah-reaksi katoda  sehingga # elektron membatalkan

   2 Cl- → Cl

2 + 2 e-(anoda - oksidasi) E ° = -1,36 V

  2 [Na + + e- → Na] (katoda - reduksi) E ° = -2,71 V

   2 Cl- + 2 Na + → Cl2 + 2 Na (Reaksi Cell)

 
 

tetapi, dalam larutan air, elektrolisis air dapat terjadi: (Gambar 19,19)   oksidasi (O2 → H2O)

    → 2 H2O O2 + 4 H + + 4 e-E ° = -1,23 V

   pengurangan (H2O → H2) - dalam larutan netral atau dasar

   2 H2O + 2 e- → H2 + 2 OH-E ° = -0,83 V

  Atau   pengurangan (H + → H2) - dalam larutan asam

   2 H + + 2 e- → H2 E ° = 0,0 V

 
 

Sel rexn: 2 H2O + 2 Cl- → H2 + Cl2 + OH-12

C. Beberapa Aplikasi Industri Elektrolisis

 • Persiapan Aluminium dari Al cair   (Tidak dapat menggunakan Al 3 + dalam larutan sejak H2O lebih mudah untuk mengurangi)

   anoda: 3 [O2- → 1 / 2 O2 + 2 e-]

  katoda: 2 [Al3 + + 3 e- → Al]

  Cell: 2 Al

3 + + 3 O2- → 3 / 2 O2 + 2 Al

• elektroplating: reduksi ion logam (dari solusi) untuk logam murni (Ag, Cr, Cu, dll)

   Cr3 + + 3 e- → Cr (krom plating)

 D. kuantitatif aspek elektrolisis

mempertimbangkan sel dengan reaksi katoda atas

• stoikiometri: 1 Cr3 mol + ~ 3 mol e-~ 1 mol Cr

• jika lancar sebesar 3 mol elektron dilewatkan melalui larutan dari Cr3 +, maka 1 mol logam Cr akan dihasilkan

• 1 Faraday (F) = 1 mol elektron      namun, berapa banyak arus listrik ini?

• 1 F = 96.500 coulomb

• 1 coulomb = 1 amp detik

Artikel yang berkaitan...